How to test the missing data mechanism in a hidden Markov model
نویسندگان
چکیده
A Hidden Markov Model with missing data in the outcome variable is considered. The initial and transition probabilities of chain emission probability HMM are allowed to depend on fully observed covariables. Tests for ignorable MCAR mechanisms proposed. These tests do not require grouping individuals by their pattern, making them easier apply practice. They based estimates conditional emitting a given latent state some When mechanism holds, value same variables. On contrary, when these all same. practical implementation simulations proposed, along presentation performances. real example from piglet farming illustrates use.
منابع مشابه
A hidden Markov model-based missing data imputation approach
The accuracy of automatic speech recognizer degrades rapidly when speech was distorted by noise. Robustness against noise arises to be one of the challenge problems. In this paper, a hidden Markov model (HMM) based data imputation approach is presented to improve speech recognition robustness against noise at the front-end of recognizer. Considering the correlation between different filter-bank...
متن کاملAbnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملA new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging. Weather radars are capable of detecting and displaying storm-related ...
متن کاملtuberculosis surveillance using a hidden markov model
background: routinely collected data from tuberculosis surveillance system can be used to investigate and monitor the irregularities and abrupt changes of the disease incidence. we aimed at using a hidden markov model in order to detect the abnormal states of pulmonary tuberculosis in iran. methods: data for this study were the weekly number of newly diagnosed cases with sputum smear-positive p...
متن کاملMixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting
Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes—as in the longitudinal d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2023
ISSN: ['0167-9473', '1872-7352']
DOI: https://doi.org/10.1016/j.csda.2023.107723